Blog Archives

情報検索の評価についてメモ(適合率,再現率,F値)

あるモデルによって情報を分類した時に、どのくらいうまく分類しているのか評価するためのメトリクスについてメモ。 テーマを単純にするために、文書から関連する文書を探すような情報検索システムを考える。したがって、関連する・関連しないの二値分類。 適合率(precision) 探した文書に含まれる関連文書の割合。 どれだけ正確に関連文書を探せているかを判定。 再現率(recall) 関連文書をどこまで探し出せているか。 網羅性を判定。 F値(F-score, F-measure, F_1 score) 適合率と再現率はトレードオフの関係にあるため、調和平均してバランスを見るのがF値 例 関連するドキュメントは relevant の頭文字をとって R、関連しないドキュメントは nonrelevant の頭文字をとって N で表すことにする。 3個だけ関連文書があるとする。 R R N R N N N N N N 例1)極端な例として、システムがすべての文書を関連すると判断した場合 正解 R R N R N

Tagged with: , , ,
Posted in algorithm, nlp
Archives